29 research outputs found

    Traits and risk factors of post-disaster infectious disease outbreaks: a systematic review

    Get PDF
    Infectious disease outbreaks are increasingly recognised as events that exacerbate impacts or prolong recovery following disasters. Yet, our understanding of the frequency, geography, characteristics and risk factors of post-disaster disease outbreaks globally is lacking. This limits the extent to which disease outbreak risks can be prepared for, monitored and responded to following disasters. Here, we conducted a global systematic review of post-disaster outbreaks and found that outbreaks linked to conficts and hydrological events were most frequently reported, and most often caused by bacterial and water-borne agents. Lack of adequate WASH facilities and poor housing were commonly reported risk factors. Displacement, through infrastructure damage, can lead to risk cascades for disease outbreaks; however, displacement can also be an opportunity to remove people from danger and ultimately protect health. The results shed new light on post-disaster disease outbreaks and their risks. Understanding these risk factors and cascades, could help improve future region-specifc disaster risk reduction

    Accessing sub-national cholera epidemiological data for Nigeria and the Democratic Republic of Congo during the seventh pandemic

    Get PDF
    Background: Vibrio cholerae is a water-borne pathogen with a global burden estimate at 1.4 to 4.0 million annual cases. Over 94% of these cases are reported in Africa and more research is needed to understand cholera dynamics in the region. Cholera data are lacking, mainly due to reporting issues, creating barriers for widespread research on cholera epidemiology and management in Africa. Main body: Here, we present datasets that were created to help address this gap, collating freely available sub-national cholera data for Nigeria and the Democratic Republic of Congo. The data were collated from a variety of English and French publicly available sources, including the World Health Organization, PubMed, UNICEF, EM-DAT, the Nigerian CDC and peer-reviewed literature. These data include information on cases, deaths, age, gender, oral cholera vaccination, risk factors and interventions. Conclusion: These datasets can facilitate qualitative, quantitative and mixed methods research in these two high burden countries to assist in public health planning. The data can be used in collaboration with organisations in the two countries, which have also collected data or undertaking research. By making the data and methods available, we aim to encourage their use and further data collection and compilation to help improve the data gaps for cholera in Africa

    Association between Conflict and Cholera in Nigeria and the Democratic Republic of the Congo

    Get PDF
    Cholera outbreaks contribute substantially to illness and death in low- and middle-income countries. Cholera outbreaks are associated with several social and environmental risk factors, and extreme conditions can act as catalysts. A social extreme known to be associated with infectious disease outbreaks is conflict, causing disruption to services, loss of income, and displacement. To determine the extent of this association, we used the self-controlled case-series method and found that conflict increased the risk for cholera in Nigeria by 3.6 times and in the Democratic Republic of the Congo by 2.6 times. We also found that 19.7% of cholera outbreaks in Nigeria and 12.3% of outbreaks in the Democratic Republic of the Congo were attributable to conflict. Our results highlight the value of providing rapid and sufficient assistance during conflict-associated cholera outbreaks and working toward conflict resolution and addressing preexisting vulnerabilities, such as poverty and access to healthcare

    Norovirus transmission dynamics: a modelling review.

    Get PDF
    Norovirus is one of the leading causes of viral gastroenteritis worldwide and responsible for substantial morbidity, mortality and healthcare costs. To further understanding of the epidemiology and control of norovirus, there has been much recent interest in describing the transmission dynamics of norovirus through mathematical models. In this study, we review the current modelling approaches for norovirus transmission. We examine the data and methods used to estimate these models that vary structurally and parametrically between different epidemiological contexts. Many of the existing studies at population level have focused on the same case notification dataset, whereas models from outbreak settings are highly specific and difficult to generalise. In this review, we explore the consistency in the description of norovirus transmission dynamics and the robustness of parameter estimates between studies. In particular, we find that there is considerable variability in estimates of key parameters such as the basic reproduction number, which may mean that the effort required to control norovirus at the population level may currently be underestimated.Takeda Pharmaceutical

    Exploring relationships between drought and epidemic cholera in Africa using generalised linear models

    Get PDF
    BACKGROUND: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. METHODS: Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO2 emissions, socio-economic development, and population growth. RESULTS: The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. CONCLUSIONS: Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis

    Exploring relationships between drought and epidemic cholera in Africa using generalised linear models

    Get PDF
    Background Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought. Methods Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO2 emissions, socio-economic development, and population growth. Results The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous. Conclusions Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis. Competing Interest Statement The authors have declared no competing interest. Funding Statement This work was supported by the Natural Environmental Research Council [NE/S007415] as part of the Grantham Institute for Climate Change and the Environments (Imperial College London) Science and Solutions for a Changing Planet Doctoral Training Partnership. We also acknowledge joint Centre funding from the UK Medical Research Council and Department for International Development [MR/R0156600/1]

    COVID-19 in Japan: insights from the first three months of the epidemic

    Get PDF
    Background Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. Methods We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. Results The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ±2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95%CrI:1.6, 3.3) nationally. In the final week of the trusted period, Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6) respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients <20 years old developing pneumonia or severe respiratory symptoms. Conclusions Information collected in the early phases of an outbreak are important in characterising any novel pathogen. Timely recognition of key symptoms and high-risk settings for transmission can help to inform response strategies. The data analysed here were the result of robust and timely investigations and demonstrate the improvements to epidemic control as a result of such surveillanc

    Outbreak of Ebola virus disease in the Democratic Republic of the Congo, April–May, 2018: an epidemiological study

    Get PDF
    Background On May 8, 2018, the Government of the Democratic Republic of the Congo reported an outbreak of Ebola virus disease in Équateur Province in the northwest of the country. The remoteness of most affected communities and the involvement of an urban centre connected to the capital city and neighbouring countries makes this outbreak the most complex and high risk ever experienced by the Democratic Republic of the Congo. We provide early epidemiological information arising from the ongoing investigation of this outbreak. Methods We classified cases as suspected, probable, or confirmed using national case definitions of the Democratic Republic of the Congo Ministère de la Santé Publique. We investigated all cases to obtain demographic characteristics, determine possible exposures, describe signs and symptoms, and identify contacts to be followed up for 21 days. We also estimated the reproduction number and projected number of cases for the 4-week period from May 25, to June 21, 2018. Findings As of May 30, 2018, 50 cases (37 confirmed, 13 probable) of Zaire ebolavirus were reported in the Democratic Republic of the Congo. 21 (42%) were reported in Bikoro, 25 (50%) in Iboko, and four (8%) in Wangata health zones. Wangata is part of Mbandaka, the urban capital of Équateur Province, which is connected to major national and international transport routes. By May 30, 2018, 25 deaths from Ebola virus disease had been reported, with a case fatality ratio of 56% (95% CI 39–72) after adjustment for censoring. This case fatality ratio is consistent with estimates for the 2014–16 west African Ebola virus disease epidemic (p=0·427). The median age of people with confirmed or probable infection was 40 years (range 8–80) and 30 (60%) were male. The most commonly reported signs and symptoms in people with confirmed or probable Ebola virus disease were fever (40 [95%] of 42 cases), intense general fatigue (37 [90%] of 41 cases), and loss of appetite (37 [90%] of 41 cases). Gastrointestinal symptoms were frequently reported, and 14 (33%) of 43 people reported haemorrhagic signs. Time from illness onset and hospitalisation to sample testing decreased over time. By May 30, 2018, 1458 contacts had been identified, of which 746 (51%) remained under active follow-up. The estimated reproduction number was 1·03 (95% credible interval 0·83–1·37) and the cumulative case incidence for the outbreak by June 21, 2018, is projected to be 78 confirmed cases (37–281), assuming heterogeneous transmissibility. Interpretation The ongoing Ebola virus outbreak in the Democratic Republic of the Congo has similar epidemiological features to previous Ebola virus disease outbreaks. Early detection, rapid patient isolation, contact tracing, and the ongoing vaccination programme should sufficiently control the outbreak. The forecast of the number of cases does not exceed the current capacity to respond if the epidemiological situation does not change. The information presented, although preliminary, has been essential in guiding the ongoing investigation and response to this outbreak

    A systematic review of the data, methods and environmental covariates used to map Aedes-borne arbovirus transmission risk

    Get PDF
    BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping

    Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England

    Get PDF
    We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission
    corecore